首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:From Pathwidth to Connected Pathwidth
  • 本地全文:下载
  • 作者:Dariusz Dereniowski
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2011
  • 卷号:9
  • 页码:416-427
  • DOI:10.4230/LIPIcs.STACS.2011.416
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:It is proven that the connected pathwidth of any graph G is at most 2*pw(G)+1, where pw(G) is the pathwidth of G. The method is constructive, i.e. it yields an efficient algorithm that for a given path decomposition of width k computes a connected path decomposition of width at most 2k+1. The running time of the algorithm is O(dk^2), where d is the number of `bags' in the input path decomposition. The motivation for studying connected path decompositions comes from the connection between the pathwidth and some graph searching games. One of the advantages of the above bound for connected pathwidth is an inequality $csn(G) <= 2*sn(G)+3$, where $csn(G)$ is the connected search number of a graph $G$ and $sn(G)$ is its search number, which holds for any graph $G$. Moreover, the algorithm presented in this work can be used to convert efficiently a given search strategy using $k$ searchers into a connected one using $2k+3$ searchers and starting at arbitrary homebase.
  • 关键词:connected pathwidth; connected searching; fugitive search games; graph searching; pathwidth
国家哲学社会科学文献中心版权所有