摘要:We deploy algebraic complexity theoretic techniques for constructing symmetric determinantal representations of weakly-skew circuits, which include formulas. Our representations produce matrices of much smaller dimensions than those given in the convex geometry literature when applied to polynomials having a concise representation (as a sum of monomials, or more generally as an arithmetic formula or a weakly-skew circuit). These representations are valid in any field of characteristic different from 2. In characteristic 2 we are led to an almost complete solution to a question of Buergisser on the VNP-completeness of the partial permanent. In particular, we show that the partial permanent cannot be VNP-complete in a finite field of characteristic 2 unless the polynomial hierarchy collapses.
关键词:algebraic complexity; determinant and permanent of symmetric matrices; formulas; skew circuits; Valiant's classes