首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Rainbow Connectivity: Hardness and Tractability
  • 本地全文:下载
  • 作者:Prabhanjan Ananth ; Meghana Nasre ; Kanthi K. Sarpatwar
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2011
  • 卷号:13
  • 页码:241-251
  • DOI:10.4230/LIPIcs.FSTTCS.2011.241
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A path in an edge colored graph is said to be a rainbow path if no two edges on the path have the same color. An edge colored graph is (strongly) rainbow connected if there exists a (geodesic) rainbow path between every pair of vertices. The (strong) rainbow connectivity of a graph G, denoted by (src(G), respectively) rc(G) is the smallest number of colors required to edge color the graph such that G is (strongly) rainbow connected. In this paper we study the rainbow connectivity problem and the strong rainbow connectivity problem from a computational point of view. Our main results can be summarised as below: 1) For every fixed k >= 3, it is NP-Complete to decide whether src(G) = 3, it is NP-Complete to decide whether rc(G) <= k. This resolves one of the open problems posed by Chakraborty et al. (J. Comb. Opt., 2011) where they prove the hardness for the even case. 3) The following problem is fixed parameter tractable: Given a graph G, determine the maximum number of pairs of vertices that can be rainbow connected using two colors. 4) For a directed graph G, it is NP-Complete to decide whether rc(G) <= 2.
  • 关键词:Computational Complexity; Rainbow Connectivity; Graph Theory; Fixed Parameter Tractable Algorithms
国家哲学社会科学文献中心版权所有