首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Tight Upper Bounds for Streett and Parity Complementation
  • 本地全文:下载
  • 作者:Yang Cai ; Ting Zhang
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2011
  • 卷号:12
  • 页码:112-128
  • DOI:10.4230/LIPIcs.CSL.2011.112
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Complementation of finite automata on infinite words is not only a fundamental problem in automata theory, but also serves as a cornerstone for solving numerous decision problems in mathematical logic, model-checking, program analysis and verification. For Streett complementation, a significant gap exists between the current lower bound 2^{Omega(n*log(n*k))} and upper bound 2^{O(n*k*log(n*k))}, where n is the state size, k is the number of Streett pairs, and k can be as large as 2^{n}. Determining the complexity of Streett complementation has been an open question since the late 80's. In this paper we show a complementation construction with upper bound 2^{O(n*log(n)+n*k*log(k))} for k=O(n) and 2^{O(n^{2}*log(n))} for k=Omega(n), which matches well the lower bound obtained in the paper arXiv:1102.2963. We also obtain a tight upper bound 2^{O(n*log(n))} for parity complementation.
  • 关键词:Streett automata; omega-automata; parity automata; complementation; upper bounds
国家哲学社会科学文献中心版权所有