首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:The dimension of ergodic random sequences
  • 本地全文:下载
  • 作者:Mathieu Hoyrup
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2012
  • 卷号:14
  • 页码:567-576
  • DOI:10.4230/LIPIcs.STACS.2012.567
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let m be a computable ergodic shift-invariant measure over the set of infinite binary sequences. Providing a constructive proof of Shannon-McMillan-Breiman theorem, V'yugin proved that if x is a Martin-Löf random binary sequence w.r.t. m then its strong effective dimension Dim(x) equals the entropy of m. Whether its effective dimension dim(x) also equals the entropy was left as an open problem. In this paper we settle this problem, providing a positive answer. A key step in the proof consists in extending recent results on Birkhoff's ergodic theorem for Martin-Löf random sequences. At the same time, we present extensions of some previous results. As pointed out by a referee the main result can also be derived from results by Hochman [Upcrossing inequalities for stationary sequences and applications. The Annals of Probability, 37(6):2135--2149, 2009], using rather different considerations.
  • 关键词:Shannon-McMillan-Breiman theorem; Martin-L{\"o
国家哲学社会科学文献中心版权所有