摘要:The Pure Pattern Calculus (PPC) extends the lambda-calculus, as well as the family of algebraic pattern calculi, with first-class patterns; that is, patterns can be passed as arguments, evaluated and returned as results. The notion of matching failure of the PPC not only provides a mechanism to define functions by pattern matching on cases but also supplies PPC with parallel-or-like, non-sequential behaviour. Therefore, devising normalising strategies for PPC to obtain well-behaved implementations turns out to be challenging. This paper focuses on normalising reduction strategies for PPC. We define a (multistep) strategy and show that it is normalising. The strategy generalises the leftmost-outermost strategy for lambda-calculus and is strictly finer than parallel-outermost. The normalisation proof is based on the notion of necessary set of redexes, a generalisation of the notion of needed redex encompassing non-sequential reduction systems.