摘要:We consider single processor preemptive scheduling with job-dependent setup times. In this model, a job-dependent setup time is incurred when a job is started for the first time, and each time it is restarted after preemption. This model is a common generalization of preemptive scheduling, and actually of non-preemptive scheduling as well. The objective is to minimize the sum of any general non-negative, non-decreasing cost functions of the completion times of the jobs -- this generalizes objectives of minimizing weighted flow time, flow-time squared, tardiness or the number of tardy jobs among many others. Our main result is a randomized polynomial time O(1)-speed O(1)-approximation algorithm for this problem. Without speedup, no polynomial time finite multiplicative approximation is possible unless P=NP. We extend the approach of Bansal et al. (FOCS 2007) of rounding a linear programming relaxation which accounts for costs incurred due to the non-preemptive nature of the schedule. A key new idea used in the rounding is that a point in the intersection polytope of two matroids can be decomposed as a convex combination of incidence vectors of sets that are independent in both matroids. In fact, we use this for the intersection of a partition matroid and a laminar matroid, in which case the decomposition can be found efficiently using network flows. Our approach gives a randomized polynomial time offline O(1)-speed O(1)-approximation algorithm for the broadcast scheduling problem with general cost functions as well.
关键词:Scheduling; resource augmentation; approximation algorithm; preemption; setup times