首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Density Functions subject to a Co-Matroid Constraint
  • 本地全文:下载
  • 作者:Venkatesan T. Chakaravarthy ; Natwar Modani ; Sivaramakrishnan R. Natarajan
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2012
  • 卷号:18
  • 页码:236-248
  • DOI:10.4230/LIPIcs.FSTTCS.2012.236
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper we consider the problem of finding the densest subset subject to co-matroid constraints. We are given a monotone supermodular set function f defined over a universe U, and the density of a subset S is defined to be f(S)/|S|. This generalizes the concept of graph density. Co-matroid constraints are the following: given matroid M a set S is feasible, iff the complement of S is independent in the matroid. Under such constraints, the problem becomes NP-hard. The specific case of graph density has been considered in literature under specific co-matroid constraints, for example, the cardinality matroid and the partition matroid. We show a 2-approximation for finding the densest subset subject to co-matroid constraints. Thereby we improve the approximation guarantees for the result for partition matroids in the literature.
  • 关键词:Approximation Algorithms; Submodular Functions; Graph Density
国家哲学社会科学文献中心版权所有