摘要:In this article, we study shape fitting problems, epsilon-coresets, and total sensitivity. We focus on the (j,k)-projective clustering problems, including k-median/k-means, k-line clustering, j-subspace approximation, and the integer (j,k)-projective clustering problem. We derive upper bounds of total sensitivities for these problems, and obtain epsilon-coresets using these upper bounds. Using a dimension-reduction type argument, we are able to greatly simplify earlier results on total sensitivity for the k-median/k-means clustering problems, and obtain positively-weighted epsilon-coresets for several variants of the (j,k)-projective clustering problem. We also extend an earlier result on epsilon-coresets for the integer (j,k)-projective clustering problem in fixed dimension to the case of high dimension.