摘要:In the Correlation Clustering problem, also known as Cluster Editing, we are given an undirected graph G and a positive integer k; the task is to decide whether G can be transformed into a cluster graph, i.e., a disjoint union of cliques, by changing at most k adjacencies, that is, by adding or deleting at most k edges. The motivation of the problem stems from various tasks in computational biology (Ben-Dor et al., Journal of Computational Biology 1999) and machine learning (Bansal et al., Machine Learning 2004). Although in general Correlation Clustering is APX-hard (Charikar et al., FOCS 2003), the version of the problem where the number of cliques may not exceed a prescribed constant p admits a PTAS (Giotis and Guruswami, SODA 2006). We study the parameterized complexity of Correlation Clustering with this restriction on the number of cliques to be created. We give an algorithm that - in time O(2^{O(sqrt{pk})} + n+m) decides whether a graph G on n vertices and m edges can be transformed into a cluster graph with exactly p cliques by changing at most k adjacencies. We complement these algorithmic findings by the following, surprisingly tight lower bound on the asymptotic behavior of our algorithm. We show that unless the Exponential Time Hypothesis (ETH) fails - for any constant 0 <= sigma <= 1, there is p = Theta(k^sigma) such that there is no algorithm deciding in time 2^{o(sqrt{pk})} n^{O(1)} whether an n-vertex graph G can be transformed into a cluster graph with at most p cliques by changing at most k adjacencies. Thus, our upper and lower bounds provide an asymptotically tight analysis of the multivariate parameterized complexity of the problem for the whole range of values of p from constant to a linear function of k.