首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Tight bounds for Parameterized Complexity of Cluster Editing
  • 本地全文:下载
  • 作者:Fedor V. Fomin ; Stefan Kratsch ; Marcin Pilipczuk
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2013
  • 卷号:20
  • 页码:32-43
  • DOI:10.4230/LIPIcs.STACS.2013.32
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In the Correlation Clustering problem, also known as Cluster Editing, we are given an undirected graph G and a positive integer k; the task is to decide whether G can be transformed into a cluster graph, i.e., a disjoint union of cliques, by changing at most k adjacencies, that is, by adding or deleting at most k edges. The motivation of the problem stems from various tasks in computational biology (Ben-Dor et al., Journal of Computational Biology 1999) and machine learning (Bansal et al., Machine Learning 2004). Although in general Correlation Clustering is APX-hard (Charikar et al., FOCS 2003), the version of the problem where the number of cliques may not exceed a prescribed constant p admits a PTAS (Giotis and Guruswami, SODA 2006). We study the parameterized complexity of Correlation Clustering with this restriction on the number of cliques to be created. We give an algorithm that - in time O(2^{O(sqrt{pk})} + n+m) decides whether a graph G on n vertices and m edges can be transformed into a cluster graph with exactly p cliques by changing at most k adjacencies. We complement these algorithmic findings by the following, surprisingly tight lower bound on the asymptotic behavior of our algorithm. We show that unless the Exponential Time Hypothesis (ETH) fails - for any constant 0 <= sigma <= 1, there is p = Theta(k^sigma) such that there is no algorithm deciding in time 2^{o(sqrt{pk})} n^{O(1)} whether an n-vertex graph G can be transformed into a cluster graph with at most p cliques by changing at most k adjacencies. Thus, our upper and lower bounds provide an asymptotically tight analysis of the multivariate parameterized complexity of the problem for the whole range of values of p from constant to a linear function of k.
  • 关键词:parameterized complexity; cluster editing; correlation clustering; subexponential algorithms; tight bounds
国家哲学社会科学文献中心版权所有