首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Annotation-Free Sequent Calculi for Full Intuitionistic Linear Logic
  • 本地全文:下载
  • 作者:Ranald Clouston ; Jeremy Dawson ; Rajeev Gor{\'e
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2013
  • 卷号:23
  • 页码:197-214
  • DOI:10.4230/LIPIcs.CSL.2013.197
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Full Intuitionistic Linear Logic (FILL) is multiplicative intuitionistic linear logic extended with par. Its proof theory has been notoriously difficult to get right, and existing sequent calculi all involve inference rules with complex annotations to guarantee soundness and cut-elimination. We give a simple and annotation-free display calculus for FILL which satisfies Belnap's generic cut-elimination theorem. To do so, our display calculus actually handles an extension of FILL, called Bi-Intuitionistic Linear Logic (BiILL), with an 'exclusion' connective defined via an adjunction with par. We refine our display calculus for BiILL into a cut-free nested sequent calculus with deep inference in which the explicit structural rules of the display calculus become admissible. A separation property guarantees that proofs of FILL formulae in the deep inference calculus contain no trace of exclusion. Each such rule is sound for the semantics of FILL, thus our deep inference calculus and display calculus are conservative over FILL. The deep inference calculus also enjoys the subformula property and terminating backward proof search, which gives the NP-completeness of BiILL and FILL.
  • 关键词:Linear logic; display calculus; nested sequent calculus; deep inference
国家哲学社会科学文献中心版权所有