首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:On the locality of arb-invariant first-order logic with modulo counting quantifiers
  • 本地全文:下载
  • 作者:Frederik Harwath ; Nicole Schweikardt
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2013
  • 卷号:23
  • 页码:363-379
  • DOI:10.4230/LIPIcs.CSL.2013.363
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study Gaifman and Hanf locality of an extension of first-order logic with modulo p counting quantifiers (FO+MODp, for short) with arbitrary numerical predicates. We require that the validity of formulas is independent of the particular interpretation of the numerical predicates and refer to such formulas as arb-invariant formulas. This paper gives a detailed picture of locality and non-locality properties of arb-invariant FO+MODp. For example, on the class of all finite structures, for any p >= 2, arb-invariant FO+MODp is neither Hanf nor Gaifman local with respect to a sublinear locality radius. However, in case that p is an odd prime power, it is weakly Gaifman local with a polylogarithmic locality radius. And when restricting attention to the class of string structures, for odd prime powers p, arb-invariant FO+MODp is both Hanf and Gaifman local with a polylogarithmic locality radius. Our negative results build on examples of order-invariant FO+MODp formulas presented in Niemistö's PhD thesis. Our positive results make use of the close connection between FO+MODp and Boolean circuits built from NOT-gates and AND-, OR-, and MODp-gates of arbitrary fan-in.
  • 关键词:finite model theory; Gaifman and Hanf locality; first-order logic with modulo counting quantifiers; order-invariant and arb-invariant formulas; lower
国家哲学社会科学文献中心版权所有