首页    期刊浏览 2025年09月15日 星期一
登录注册

文章基本信息

  • 标题:Primal Infon Logic: Derivability in Polynomial Time
  • 本地全文:下载
  • 作者:Anguraj Baskar ; Prasad Naldurg ; K. R. Raghavendra
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2013
  • 卷号:24
  • 页码:163-174
  • DOI:10.4230/LIPIcs.FSTTCS.2013.163
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Primal infon logic (PIL), introduced by Gurevich and Neeman in 2009, is a logic for authorization in distributed systems. It is a variant of the (and, implies)-fragment of intuitionistic modal logic. It presents many interesting technical challenges -- one of them is to determine the complexity of the derivability problem. Previously, some restrictions of propositional PIL were proved to have a linear time algorithm, and some extensions have been proved to be PSPACE-complete. In this paper, we provide an O(N^3) algorithm for derivability in propositional PIL. The solution involves an interesting interplay between the sequent calculus formulation (to prove the subformula property) and the natural deduction formulation of the logic (based on which we provide an algorithm for the derivability problem).
  • 关键词:Authorization logics; Intuitionistic modal logic; Proof theory; Cut elimination; Subformula property
国家哲学社会科学文献中心版权所有