首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Fully Dynamic All-Pairs Shortest Paths: Breaking the O(n) Barrier
  • 本地全文:下载
  • 作者:Ittai Abraham ; Shiri Chechik ; Kunal Talwar
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2014
  • 卷号:28
  • 页码:1-16
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2014.1
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A fully dynamic approximate distance oracle is a distance reporting data structure that supports dynamic insert edge and delete edge operations. In this paper we break a longstanding barrier in the design of fully dynamic all-pairs approximate distance oracles. All previous results for this model incurred an amortized cost of at least Omega(n) per operation. We present the first construction that provides constant stretch and o(m) amortized update time. For graphs that are not too dense (where |E| = O(|V|^{2-delta}) for some delta>0 we break the O(n) barrier and provide the first construction with constant stretch and o(n) amortized cost.
  • 关键词:Shortest Paths; Dynamic Algorithms
国家哲学社会科学文献中心版权所有