首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:On the Equivalence of the Bidirected and Hypergraphic Relaxations for Steiner Tree
  • 本地全文:下载
  • 作者:Andreas Emil Feldmann ; Jochen K{\"o}nemann ; Neil Olver
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2014
  • 卷号:28
  • 页码:176-191
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2014.176
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The bottleneck of the currently best (ln(4) + epsilon)-approximation algorithm for the NP-hard Steiner tree problem is the solution of its large, so called hypergraphic, linear programming relaxation (HYP). Hypergraphic LPs are NP-hard to solve exactly, and it is a formidable computational task to even approximate them sufficiently well. We focus on another well-studied but poorly understood LP relaxation of the problem: the bidirected cut relaxation (BCR). This LP is compact, and can therefore be solved efficiently. Its integrality gap is known to be greater than 1.16, and while this is widely conjectured to be close to the real answer, only a (trivial) upper bound of 2 is known. In this paper, we give an efficient constructive proof that BCR and HYP are polyhedrally equivalent in instances that do not have an (edge-induced) claw on Steiner vertices, i.e., they do not contain a Steiner vertex with 3 Steiner neighbors. This implies faster ln(4)-approximations for these graphs, and is a significant step forward from the previously known equivalence for (so called quasi-bipartite) instances in which Steiner vertices form an independent set. We complement our results by showing that even restricting to instances where Steiner vertices induce one single star, determining whether the two relaxations are equivalent is NP-hard.
  • 关键词:Steiner tree; bidirected cut relaxation; hypergraphic relaxation; polyhedral equivalence; approximation algorithms
国家哲学社会科学文献中心版权所有