首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:The Condensation Phase Transition in Random Graph Coloring
  • 本地全文:下载
  • 作者:Victor Bapst ; Amin Coja-Oghlan ; Samuel Hetterich
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2014
  • 卷号:28
  • 页码:449-464
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2014.449
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Based on a non-rigorous formalism called the "cavity method", physicists have put forward intriguing predictions on phase transitions in discrete structures. One of the most remarkable ones is that in problems such as random k-SAT or random graph k-coloring, very shortly before the threshold for the existence of solutions there occurs another phase transition called condensation [Krzakala et al., PNAS 2007]. The existence of this phase transition appears to be intimately related to the difficulty of proving precise results on, e.g., the k-colorability threshold as well as to the performance of message passing algorithms. In random graph k-coloring, there is a precise conjecture as to the location of the condensation phase transition in terms of a distributional fixed point problem. In this paper we prove this conjecture for k exceeding a certain constant k0.
  • 关键词:random graphs; graph coloring; phase transitions; message-passing algorithm
国家哲学社会科学文献中心版权所有