首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:An Optimal Algorithm for Large Frequency Moments Using O(n^(1-2/k)) Bits
  • 本地全文:下载
  • 作者:Vladimir Braverman ; Jonathan Katzman ; Charles Seidell
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2014
  • 卷号:28
  • 页码:531-544
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2014.531
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper, we provide the first optimal algorithm for the remaining open question from the seminal paper of Alon, Matias, and Szegedy: approximating large frequency moments. We give an upper bound on the space required to find a k-th frequency moment of O(n^(1-2/k)) bits that matches, up to a constant factor, the lower bound of Woodruff et. al for constant epsilon and constant k. Our algorithm makes a single pass over the stream and works for any constant k > 3. It is based upon two major technical accomplishments: first, we provide an optimal algorithm for finding the heavy elements in a stream; and second, we provide a technique using Martingale Sketches which gives an optimal reduction of the large frequency moment problem to the all heavy elements problem. We also provide a polylogarithmic improvement for frequency moments, frequency based functions, spatial data streams, and measuring independence of data sets.
  • 关键词:Streaming Algorithms; Randomized Algorithms; Frequency Moments; Heavy Hitters
国家哲学社会科学文献中心版权所有