首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Communication Complexity of Set-Disjointness for All Probabilities
  • 本地全文:下载
  • 作者:Mika G{\"o}{\"o}s ; Thomas Watson
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2014
  • 卷号:28
  • 页码:721-736
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2014.721
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study set-disjointness in a generalized model of randomized two-party communication where the probability of acceptance must be at least alpha(n) on yes-inputs and at most beta(n) on no-inputs, for some functions alpha(n)>beta(n). Our main result is a complete characterization of the private-coin communication complexity of set-disjointness for all functions alpha and beta, and a near-complete characterization for public-coin protocols. In particular, we obtain a simple proof of a theorem of Braverman and Moitra (STOC 2013), who studied the case where alpha=1/2+epsilon(n) and beta=1/2-epsilon(n). The following contributions play a crucial role in our characterization and are interesting in their own right. (1) We introduce two communication analogues of the classical complexity class that captures small bounded-error computations: we define a "restricted" class SBP (which lies between MA and AM) and an "unrestricted" class USBP. The distinction between them is analogous to the distinction between the well-known communication classes PP and UPP. (2) We show that the SBP communication complexity is precisely captured by the classical corruption lower bound method. This sharpens a theorem of Klauck (CCC 2003). (3) We use information complexity arguments to prove a linear lower bound on the USBP complexity of set-disjointness.
  • 关键词:Communication Complexity; Set-Disjointness; All Probabilities
国家哲学社会科学文献中心版权所有