摘要:Random Access Codes is an information task that has been extensively studied and found many applications in quantum information. In this scenario, Alice receives an n-bit string x, and wishes to encode x into a quantum state rho_x, such that Bob, when receiving the state rho_x, can choose any bit i in [n] and recover the input bit x_i with high probability. Here we study a variant called parity-oblivious random acres codes, where we impose the cryptographic property that Bob cannot infer any information about the parity of any subset of bits of the input, apart form the single bits x_i. We provide the optimal quantum parity-oblivious random access codes and show that they are asymptotically better than the optimal classical ones. For this, we relate such encodings to a non-local game and provide tight bounds for the success probability of the non-local game via semi-definite programming. Our results provide a large non-contextuality inequality violation and resolve the main open question in [Spekkens et al., Phys. Review Letters, 2009].
关键词:quantum information theory; contextuality; semidefinite programming