首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Behavioral Metrics via Functor Lifting
  • 本地全文:下载
  • 作者:Paolo Baldan ; Filippo Bonchi ; Henning Kerstan
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2014
  • 卷号:29
  • 页码:403-415
  • DOI:10.4230/LIPIcs.FSTTCS.2014.403
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study behavioral metrics in an abstract coalgebraic setting. Given a coalgebra alpha : X -> FX in Set, where the functor F specifies the branching type, we define a framework for deriving pseudometrics on X which measure the behavioral distance of states. A first crucial step is the lifting of the functor F on Set to a functor /F in the category PMet of pseudometric spaces. We present two different approaches which can be viewed as generalizations of the Kantorovich and Wasserstein pseudometrics for probability measures. We show that the pseudometrics provided by the two approaches coincide on several natural examples, but in general they differ. Then a final coalgebra for F in Set can be endowed with a behavioral distance resulting as the smallest solution of a fixed-point equation, yielding the final /F-coalgebra in PMet. The same technique, applied to an arbitrary coalgebra alpha : X -> FX in Set, provides the behavioral distance on X. Under some constraints we can prove that two states are at distance 0 if and only if they are behaviorally equivalent.
  • 关键词:behavioral metric; functor lifting; pseudometric; coalgebra
国家哲学社会科学文献中心版权所有