首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:On the Complexity of Computing Maximum Entropy for Markovian Models
  • 本地全文:下载
  • 作者:Taolue Chen ; Tingting Han
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2014
  • 卷号:29
  • 页码:571-583
  • DOI:10.4230/LIPIcs.FSTTCS.2014.571
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We investigate the complexity of computing entropy of various Markovian models including Markov Chains (MCs), Interval Markov Chains (IMCs) and Markov Decision Processes (MDPs). We consider both entropy and entropy rate for general MCs, and study two algorithmic questions, i.e., entropy approximation problem and entropy threshold problem. The former asks for an approximation of the entropy/entropy rate within a given precision, whereas the latter aims to decide whether they exceed a given threshold. We give polynomial-time algorithms for the approximation problem, and show the threshold problem is in P^CH_3 (hence in PSPACE) and in P assuming some number-theoretic conjectures. Furthermore, we study both questions for IMCs and MDPs where we aim to maximise the entropy/entropy rate among an infinite family of MCs associated with the given model. We give various conditional decidability results for the threshold problem, and show the approximation problem is solvable in polynomial-time via convex programming.
  • 关键词:Markovian Models; Entropy; Complexity; Probabilistic Verification
国家哲学社会科学文献中心版权所有