摘要:We study generalisations of a simple, combinatorial proof of a Chernoff bound similar to the one by Impagliazzo and Kabanets (RANDOM, 2010). In particular, we prove a randomized version of the hitting property of expander random walks and use it to obtain an optimal expander random walk concentration bound settling a question asked by Impagliazzo and Kabanets. Next, we obtain an upper tail bound for polynomials with input variables in [0, 1] which are not necessarily independent, but obey a certain condition inspired by Impagliazzo and Kabanets. The resulting bound is applied by Holenstein and Sinha (FOCS, 2012) in the proof of a lower bound for the number of calls in a black-box construction of a pseudorandom generator from a one-way function. We also show that the same technique yields the upper tail bound for the number of copies of a fixed graph in an Erdös-Rényi random graph, matching the one given by Janson, Oleszkiewicz, and Rucinski (Israel J. Math, 2002).
关键词:concentration bounds; expander random walks; polynomial concentration