首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Upper Tail Estimates with Combinatorial Proofs
  • 本地全文:下载
  • 作者:Jan Hazla ; Thomas Holenstein
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:30
  • 页码:392-405
  • DOI:10.4230/LIPIcs.STACS.2015.392
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study generalisations of a simple, combinatorial proof of a Chernoff bound similar to the one by Impagliazzo and Kabanets (RANDOM, 2010). In particular, we prove a randomized version of the hitting property of expander random walks and use it to obtain an optimal expander random walk concentration bound settling a question asked by Impagliazzo and Kabanets. Next, we obtain an upper tail bound for polynomials with input variables in [0, 1] which are not necessarily independent, but obey a certain condition inspired by Impagliazzo and Kabanets. The resulting bound is applied by Holenstein and Sinha (FOCS, 2012) in the proof of a lower bound for the number of calls in a black-box construction of a pseudorandom generator from a one-way function. We also show that the same technique yields the upper tail bound for the number of copies of a fixed graph in an Erdös-Rényi random graph, matching the one given by Janson, Oleszkiewicz, and Rucinski (Israel J. Math, 2002).
  • 关键词:concentration bounds; expander random walks; polynomial concentration
国家哲学社会科学文献中心版权所有