首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:New Pairwise Spanners
  • 本地全文:下载
  • 作者:Telikepalli Kavitha
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:30
  • 页码:513-526
  • DOI:10.4230/LIPIcs.STACS.2015.513
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let G = (V,E) be an undirected unweighted graph on n vertices. A subgraph H of G is called an (all-pairs) purely additive spanner with stretch \beta if for every (u,v) \in V \times V, \mathsf{dist}_H(u,v) \le \mathsf{dist}_G(u,v) + \beta. The problem of computing sparse spanners with small stretch \beta is well-studied. Here we consider the following relaxation: we are given \p\subseteq V \times V and we seek a sparse subgraph H where \mathsf{dist}_H(u,v)\le \mathsf{dist}_G(u,v) + \beta for each (u,v) \in \p. Such a subgraph is called a pairwise spanner with additive stretch \beta and our goal is to construct such subgraphs that are sparser than all-pairs spanners with the same stretch. We show sparse pairwise spanners with additive stretch 4 and with additive stretch 6. We also consider the following special cases: \p = S \times V and \p = S \times T, where S\subseteq V and T\subseteq V, and show sparser pairwise spanners for these cases.
  • 关键词:undirected graphs; spanners; approximate distances; additive stretch
国家哲学社会科学文献中心版权所有