首页    期刊浏览 2025年06月19日 星期四
登录注册

文章基本信息

  • 标题:Yedalog: Exploring Knowledge at Scale
  • 本地全文:下载
  • 作者:Brian Chin ; Daniel von Dincklage ; Vuk Ercegovac
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:32
  • 页码:63-78
  • DOI:10.4230/LIPIcs.SNAPL.2015.63
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:With huge progress on data processing frameworks, human programmers are frequently the bottleneck when analyzing large repositories of data. We introduce Yedalog, a declarative programming language that allows programmers to mix data-parallel pipelines and computation seamlessly in a single language. By contrast, most existing tools for data-parallel computation embed a sublanguage of data-parallel pipelines in a general-purpose language, or vice versa. Yedalog extends Datalog, incorporating not only computational features from logic programming, but also features for working with data structured as nested records. Yedalog programs can run both on a single machine, and distributed across a cluster in batch and interactive modes, allowing programmers to mix different modes of execution easily.
  • 关键词:Datalog; MapReduce
国家哲学社会科学文献中心版权所有