首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A Depth-Five Lower Bound for Iterated Matrix Multiplication
  • 本地全文:下载
  • 作者:Suman K. Bera ; Amit Chakrabarti
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:33
  • 页码:183-197
  • DOI:10.4230/LIPIcs.CCC.2015.183
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We prove that certain instances of the iterated matrix multiplication (IMM) family of polynomials with N variables and degree n require N^(Omega(sqrt(n))) gates when expressed as a homogeneous depth-five Sigma Pi Sigma Pi Sigma arithmetic circuit with the bottom fan-in bounded by N^(1/2-epsilon). By a depth-reduction result of Tavenas, this size lower bound is optimal and can be achieved by the weaker class of homogeneous depth-four Sigma Pi Sigma Pi circuits. Our result extends a recent result of Kumar and Saraf, who gave the same N^(Omega(sqrt(n))) lower bound for homogeneous depth-four Sigma Pi Sigma Pi circuits computing IMM. It is analogous to a recent result of Kayal and Saha, who gave the same lower bound for homogeneous Sigma Pi Sigma Pi Sigma circuits (over characteristic zero) with bottom fan-in at most N^(1-epsilon), for the harder problem of computing certain polynomials defined by Nisan-Wigderson designs.
  • 关键词:arithmetic circuits; iterated matrix multiplication; depth five circuits; lower bound
国家哲学社会科学文献中心版权所有