首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Tight Size-Degree Bounds for Sums-of-Squares Proofs
  • 本地全文:下载
  • 作者:Massimo Lauria ; Jakob Nordstr{\"o}m
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:33
  • 页码:448-466
  • DOI:10.4230/LIPIcs.CCC.2015.448
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We exhibit families of 4-CNF formulas over n variables that have sums-of-squares (SOS) proofs of unsatisfiability of degree (a.k.a. rank) d but require SOS proofs of size n^Omega(d) for values of d = d(n) from constant all the way up to n^delta for some universal constant delta. This shows that the n^O(d) running time obtained by using the Lasserre semidefinite programming relaxations to find degree-d SOS proofs is optimal up to constant factors in the exponent. We establish this result by combining NP-reductions expressible as low-degree SOS derivations with the idea of relativizing CNF formulas in [Krajicek '04] and [Dantchev and Riis '03], and then applying a restriction argument as in [Atserias, Müller, and Oliva '13] and [Atserias, Lauria, and Nordstrom '14]. This yields a generic method of amplifying SOS degree lower bounds to size lower bounds, and also generalizes the approach in [ALN14] to obtain size lower bounds for the proof systems resolution, polynomial calculus, and Sherali-Adams from lower bounds on width, degree, and rank, respectively.
  • 关键词:Proof complexity; resolution; Lasserre; Positivstellensatz; sums-of-squares; SOS; semidefinite programming; size; degree; rank; clique; lower bound
国家哲学社会科学文献中心版权所有