首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:On the Smoothed Complexity of Convex Hulls
  • 本地全文:下载
  • 作者:Olivier Devillers ; Marc Glisse ; Xavier Goaoc
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:34
  • 页码:224-238
  • DOI:10.4230/LIPIcs.SOCG.2015.224
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We establish an upper bound on the smoothed complexity of convex hulls in R^d under uniform Euclidean (L^2) noise. Specifically, let {p_1^*, p_2^*, ..., p_n^*} be an arbitrary set of n points in the unit ball in R^d and let p_i = p_i^* + x_i, where x_1, x_2, ..., x_n are chosen independently from the unit ball of radius r. We show that the expected complexity, measured as the number of faces of all dimensions, of the convex hull of {p_1, p_2, ..., p_n} is O(n^{2-4/(d+1)} (1+1/r)^{d-1}); the magnitude r of the noise may vary with n. For d=2 this bound improves to O(n^{2/3} (1+r^{-2/3})). We also analyze the expected complexity of the convex hull of L^2 and Gaussian perturbations of a nice sample of a sphere, giving a lower-bound for the smoothed complexity. We identify the different regimes in terms of the scale, as a function of n, and show that as the magnitude of the noise increases, that complexity varies monotonically for Gaussian noise but non-monotonically for L^2 noise.
  • 关键词:Probabilistic analysis; Worst-case analysis; Gaussian noise
国家哲学社会科学文献中心版权所有