首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Restricted Isometry Property for General p-Norms
  • 本地全文:下载
  • 作者:Zeyuan Allen-Zhu ; Rati Gelashvili ; Ilya Razenshteyn
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:34
  • 页码:451-460
  • DOI:10.4230/LIPIcs.SOCG.2015.451
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The Restricted Isometry Property (RIP) is a fundamental property of a matrix which enables sparse recovery. Informally, an m x n matrix satisfies RIP of order k for the L_p norm, if |Ax|_p is approximately |x|_p for every x with at most k non-zero coordinates. For every 1 <= p < infty we obtain almost tight bounds on the minimum number of rows m necessary for the RIP property to hold. Prior to this work, only the cases p = 1, 1 + 1/log(k), and 2 were studied. Interestingly, our results show that the case p=2 is a "singularity" point: the optimal number of rows m is Theta(k^p) for all p in [1, infty)-{2}, as opposed to Theta(k) for k=2. We also obtain almost tight bounds for the column sparsity of RIP matrices and discuss implications of our results for the Stable Sparse Recovery problem.
  • 关键词:compressive sensing; dimension reduction; linear algebra; high-dimensional geometry
国家哲学社会科学文献中心版权所有