首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Polynomials Vanishing on Cartesian Products: The Elekes-Szabó Theorem Revisited
  • 本地全文:下载
  • 作者:Orit E. Raz ; Micha Sharir ; Frank de Zeeuw
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:34
  • 页码:522-536
  • DOI:10.4230/LIPIcs.SOCG.2015.522
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let F in Complex[x,y,z] be a constant-degree polynomial, and let A,B,C be sets of complex numbers with |A|=|B|=|C|=n. We show that F vanishes on at most O(n^{11/6}) points of the Cartesian product A x B x C (where the constant of proportionality depends polynomially on the degree of F), unless F has a special group-related form. This improves a theorem of Elekes and Szabo [ES12], and generalizes a result of Raz, Sharir, and Solymosi [RSS14a]. The same statement holds over R. When A, B, C have different sizes, a similar statement holds, with a more involved bound replacing O(n^{11/6}). This result provides a unified tool for improving bounds in various Erdos-type problems in combinatorial geometry, and we discuss several applications of this kind.
  • 关键词:Combinatorial geometry; incidences; polynomials
国家哲学社会科学文献中心版权所有