首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Bisector Energy and Few Distinct Distances
  • 本地全文:下载
  • 作者:Ben Lund ; Adam Sheffer ; Frank de Zeeuw
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:34
  • 页码:537-552
  • DOI:10.4230/LIPIcs.SOCG.2015.537
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We introduce the bisector energy of an n-point set P in the real plane, defined as the number of quadruples (a,b,c,d) from P such that a and b determine the same perpendicular bisector as c and d. If no line or circle contains M(n) points of P, then we prove that the bisector energy is O(M(n)^{2/5}n^{12/5} + M(n)n^2). We also prove the lower bound M(n)n^2, which matches our upper bound when M(n) is large. We use our upper bound on the bisector energy to obtain two rather different results: (i) If P determines O(n / sqrt(log n)) distinct distances, then for any 0 < a < 1/4, either there exists a line or circle that contains n^a points of P, or there exist n^{8/5 - 12a/5} distinct lines that contain sqrt(log n) points of P. This result provides new information on a conjecture of Erdös regarding the structure of point sets with few distinct distances. (ii) If no line or circle contains M(n) points of P, then the number of distinct perpendicular bisectors determined by P is min{M(n)^{-2/5}n^{8/5}, M(n)^{-1}n^2}). This appears to be the first higher-dimensional example in a framework for studying the expansion properties of polynomials and rational functions over the real numbers, initiated by Elekes and Ronyai.
  • 关键词:Combinatorial geometry; distinct distances; incidence geometry
国家哲学社会科学文献中心版权所有