首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Geometric Inference on Kernel Density Estimates
  • 本地全文:下载
  • 作者:Jeff M. Phillips ; Bei Wang ; Yan Zheng
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:34
  • 页码:857-871
  • DOI:10.4230/LIPIcs.SOCG.2015.857
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We show that geometric inference of a point cloud can be calculated by examining its kernel density estimate with a Gaussian kernel. This allows one to consider kernel density estimates, which are robust to spatial noise, subsampling, and approximate computation in comparison to raw point sets. This is achieved by examining the sublevel sets of the kernel distance, which isomorphically map to superlevel sets of the kernel density estimate. We prove new properties about the kernel distance, demonstrating stability results and allowing it to inherit reconstruction results from recent advances in distance-based topological reconstruction. Moreover, we provide an algorithm to estimate its topology using weighted Vietoris-Rips complexes.
  • 关键词:topological data analysis; kernel density estimate; kernel distance
国家哲学社会科学文献中心版权所有