摘要:This paper tries to remove what seems to be the remaining stumbling blocks in the way to a full understanding of the Curry-Howard isomorphism for sequent calculus, namely the questions: What do variables in proof terms stand for? What is co-control and a co-continuation? How to define the dual of Parigot's mu-operator so that it is a co-control operator? Answering these questions leads to the interpretation that sequent calculus is a formal vector notation with first-class co-control. But this is just the "internal" interpretation, which has to be developed simultaneously with, and is justified by, an equivalent, "external" interpretation, offered by natural deduction: the sequent calculus corresponds to a bi-directional, agnostic (w.r.t. the call strategy), computational lambda-calculus. Next, the formal duality between control and co-control is studied, in the context of classical logic. The duality cannot be observed in the sequent calculus, but rather in a system unifying sequent calculus and natural deduction.