摘要:We study nominal anti-unification, which is concerned with computing least general generalizations for given terms-in-context. In general, the problem does not have a least general solution, but if the set of atoms permitted in generalizations is finite, then there exists a least general generalization which is unique modulo variable renaming and alpha-equivalence. We present an algorithm that computes it. The algorithm relies on a subalgorithm that constructively decides equivariance between two terms-in-context. We prove soundness and completeness properties of both algorithms and analyze their complexity. Nominal anti-unification can be applied to problems where generalization of first-order terms is needed (inductive learning, clone detection, etc.), but bindings are involved.