摘要:We prove that for any constant k and any epsilon < 1, there exist bimatrix win-lose games for which every epsilon-WSNE requires supports of cardinality greater than k. To do this, we provide a graph-theoretic characterization of win-lose games that possess epsilon-WSNE with constant cardinality supports. We then apply a result in additive number theory of Haight to construct win-lose games that do not satisfy the requirements of the characterization. These constructions disprove graph theoretic conjectures of Daskalakis, Mehta and Papadimitriou and Myers.