首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Zero-One Laws for Sliding Windows and Universal Sketches
  • 本地全文:下载
  • 作者:Vladimir Braverman ; Rafail Ostrovsky ; Alan Roytman
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:40
  • 页码:573-590
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2015.573
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a stream of data, a typical approach in streaming algorithms is to design a sophisticated algorithm with small memory that computes a specific statistic over the streaming data. Usually, if one wants to compute a different statistic after the stream is gone, it is impossible. But what if we want to compute a different statistic after the fact? In this paper, we consider the following fascinating possibility: can we collect some small amount of specific data during the stream that is "universal," i.e., where we do not know anything about the statistics we will want to later compute, other than the guarantee that had we known the statistic ahead of time, it would have been possible to do so with small memory? This is indeed what we introduce (and show) in this paper with matching upper and lower bounds: we show that it is possible to collect universal statistics of polylogarithmic size, and prove that these universal statistics allow us after the fact to compute all other statistics that are computable with similar amounts of memory. We show that this is indeed possible, both for the standard unbounded streaming model and the sliding window streaming model.
  • 关键词:Streaming Algorithms; Universality; Sliding Windows
国家哲学社会科学文献中心版权所有