首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Local Convergence of Random Graph Colorings
  • 本地全文:下载
  • 作者:Amin Coja-Oghlan ; Charilaos Efthymiou ; Nor Jaafari
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:40
  • 页码:726-737
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2015.726
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let G=G(n,m) be a random graph whose average degree d=2m/n is below the k-colorability threshold. If we sample a k-coloring Sigma of G uniformly at random, what can we say about the correlations between the colors assigned to vertices that are far apart? According to a prediction from statistical physics, for average degrees below the so-called condensation threshold d_c, the colors assigned to far away vertices are asymptotically independent [Krzakala et al: PNAS 2007]. We prove this conjecture for k exceeding a certain constant k_0. More generally, we determine the joint distribution of the k-colorings that Sigma induces locally on the bounded-depth neighborhoods of a fixed number of vertices.
  • 关键词:Random graph; Galton-Watson tree; phase transitions; graph coloring; Gibbs distribution; convergence
国家哲学社会科学文献中心版权所有