首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Towards Resistance Sparsifiers
  • 本地全文:下载
  • 作者:Michael Dinitz ; Robert Krauthgamer ; Tal Wagner
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:40
  • 页码:738-755
  • DOI:10.4230/LIPIcs.APPROX-RANDOM.2015.738
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study resistance sparsification of graphs, in which the goal is to find a sparse subgraph (with reweighted edges) that approximately preserves the effective resistances between every pair of nodes. We show that every dense regular expander admits a (1+epsilon)-resistance sparsifier of size ~O(n/epsilon), and conjecture this bound holds for all graphs on n nodes. In comparison, spectral sparsification is a strictly stronger notion and requires Omega(n/epsilon^2) edges even on the complete graph. Our approach leads to the following structural question on graphs: Does every dense regular expander contain a sparse regular expander as a subgraph? Our main technical contribution, which may of independent interest, is a positive answer to this question in a certain setting of parameters. Combining this with a recent result of von Luxburg, Radl, and Hein (JMLR, 2014) leads to the aforementioned resistance sparsifiers.
  • 关键词:edge sparsification; spectral sparsifier; graph expansion; effective resistance; commute time
国家哲学社会科学文献中心版权所有