首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Classical and Intuitionistic Arithmetic with Higher Order Comprehension Coincide on Inductive Well-Foundedness
  • 本地全文:下载
  • 作者:Stefano Berardi
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:41
  • 页码:343-358
  • DOI:10.4230/LIPIcs.CSL.2015.343
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Assume that we may prove in Classical Functional Analysis that a primitive recursive relation R is well-founded, using the inductive definition of well-founded. In this paper we prove that such a proof of well-foundation may be made intuitionistic. We conclude that if we are able to formulate any mathematical problem as the inductive well-foundation of some primitive recursive relation, then intuitionistic and classical provability coincide, and for such a statement of well-foundation we may always find an intuitionistic proof if we may find a proof at all. The core of intuitionism are the methods for computing out data with given properties from input data with given properties: these are the results we are looking for when we do constructive mathematics. Proving that a primitive recursive relation R is inductively well-founded is a more abstract kind of result, but it is crucial as well, because once we proved that R is inductively well-founded, then we may write programs by induction over R. This is the way inductive relation are currently used in intuitionism and in proof assistants based on intuitionism, like Coq. In the paper we introduce the comprehension axiom for Functional Analysis in the form of introduction and elimination rules for predicates of types Prop, Nat->Prop, ..., in order to use Girard's method of candidates for impredicative arithmetic.
  • 关键词:Intuitionism; Inductive Definitions; Proof Theory; impredicativity; omega rule
国家哲学社会科学文献中心版权所有