首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:The General Universal Property of the Propositional Truncation
  • 本地全文:下载
  • 作者:Nicolai Kraus
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:39
  • 页码:111-145
  • DOI:10.4230/LIPIcs.TYPES.2014.111
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In a type-theoretic fibration category in the sense of Shulman (representing a dependent type theory with at least unit, sigma, pi, and identity types), we define the type of coherently constant functions from A to B. This involves an infinite tower of coherence conditions, and we therefore need the category to have Reedy limits of diagrams over omega^op. Our main result is that, if the category further has propositional truncations and satisfies function extensionality, the type of coherently constant function is equivalent to the type ||A|| -> B. If B is an n-type for a given finite n, the tower of coherence conditions becomes finite and the requirement of nontrivial Reedy limits vanishes. The whole construction can then be carried out in standard syntactical homotopy type theory and generalises the universal property of the truncation. This provides a way to define functions ||A|| -> B if B is not known to be propositional, and it streamlines the common approach of finding a propositional type Q with A -> Q and Q -> B.
  • 关键词:coherence conditions; propositional truncation; Reedy limits; universal property; well-behaved constancy
国家哲学社会科学文献中心版权所有