摘要:We extend earlier work on linear time fixpoint logics for coalgebras with branching, by showing how propositional operators arising from the choice of branching monad can be canonically added to these logics. We then consider two semantics for the uniform modal fragments of such logics: the previously-proposed, step-wise semantics and a new semantics akin to those of path-based logics. We prove that the two semantics are equivalent, and show that the canonical choice made for resolving branching in these logics is crucial for this property. We also state conditions under which similar, non-canonical logics enjoy the same property - this applies both to the choice of a branching modality and to the choice of linear time modalities. Our logics allow reasoning about linear time behaviour in systems with non-deterministic, probabilistic or weighted branching. In all these cases, the logics enhanced with propositional operators gain in expressiveness. Another contribution of our work is a reformulation of fixpoint semantics, which applies to any coalgebraic modal logic whose semantics arises from a one-step semantics.