首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Approximation of Nested Fixpoints - A Coalgebraic View of Parametric Dataypes
  • 本地全文:下载
  • 作者:Alexander Kurz ; Alberto Pardo ; Daniela Petrisan
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:35
  • 页码:205-220
  • DOI:10.4230/LIPIcs.CALCO.2015.205
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The question addressed in this paper is how to correctly approximate infinite data given by systems of simultaneous corecursive definitions. We devise a categorical framework for reasoning about regular datatypes, that is, datatypes closed under products, coproducts and fixpoints. We argue that the right methodology is on one hand coalgebraic (to deal with possible nontermination and infinite data) and on the other hand 2-categorical (to deal with parameters in a disciplined manner). We prove a coalgebraic version of Bekic lemma that allows us to reduce simultaneous fixpoints to a single fix point. Thus a possibly infinite object of interest is regarded as a final coalgebra of a many-sorted polynomial functor and can be seen as a limit of finite approximants. As an application, we prove correctness of a generic function that calculates the approximants on a large class of data types.
  • 关键词:coalgebra; Bekic lemma; infinite data; functional programming; type theory
国家哲学社会科学文献中心版权所有