首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Parameterized and Approximation Algorithms for the Load Coloring Problem
  • 本地全文:下载
  • 作者:Florian Barbero ; Gregory Gutin ; Mark Jones
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2015
  • 卷号:43
  • 页码:43-54
  • DOI:10.4230/LIPIcs.IPEC.2015.43
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let c, k be two positive integers. Given a graph G=(V,E), the c-Load Coloring problem asks whether there is a c-coloring varphi: V => [c] such that for every i in [c], there are at least k edges with both endvertices colored i. Gutin and Jones (IPL 2014) studied this problem with c=2. They showed 2-Load Coloring to be fixed-parameter tractable (FPT) with parameter k by obtaining a kernel with at most 7k vertices. In this paper, we extend the study to any fixed c by giving both a linear-vertex and a linear-edge kernel. In the particular case of c=2, we obtain a kernel with less than 4k vertices and less than 8k edges. These results imply that for any fixed c >= 2, c-Load Coloring is FPT and the optimization version of c-Load Coloring (where k is to be maximized) has an approximation algorithm with a constant ratio.
  • 关键词:Load Coloring; fixed-parameter tractability; kernelization
国家哲学社会科学文献中心版权所有