首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Computing the L1 Geodesic Diameter and Center of a Polygonal Domain
  • 本地全文:下载
  • 作者:Sang Won Bae ; Matias Korman ; Joseph S. B. Mitchell
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:47
  • 页码:14:1-14:14
  • DOI:10.4230/LIPIcs.STACS.2016.14
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:For a polygonal domain with h holes and a total of n vertices, we present algorithms that compute the L_1 geodesic diameter in O(n^2+h^4) time and the L_1 geodesic center in O((n^4+n^2 h^4)*alpha(n)) time, where alpha(.) denotes the inverse Ackermann function. No algorithms were known for these problems before. For the Euclidean counterpart, the best algorithms compute the geodesic diameter in O(n^{7.73}) or O(n^7(h+log(n))) time, and compute the geodesic center in O(n^{12+epsilon}) time. Therefore, our algorithms are much faster than the algorithms for the Euclidean problems. Our algorithms are based on several interesting observations on L_1 shortest paths in polygonal domains.
  • 关键词:geodesic diameter; geodesic center; shortest paths; polygonal domains; L1 metric
国家哲学社会科学文献中心版权所有