首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Faster Algorithms for the Constrained k-Means Problem
  • 本地全文:下载
  • 作者:Anup Bhattacharya ; Ragesh Jaiswal ; Amit Kumar
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:47
  • 页码:16:1-16:13
  • DOI:10.4230/LIPIcs.STACS.2016.16
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The classical center based clustering problems such as k-means/median/center assume that the optimal clusters satisfy the locality property that the points in the same cluster are close to each other. A number of clustering problems arise in machine learning where the optimal clusters do not follow such a locality property. For instance, consider the r-gather clustering problem where there is an additional constraint that each of the clusters should have at least r points or the capacitated clustering problem where there is an upper bound on the cluster sizes. Consider a variant of the k-means problem that may be regarded as a general version of such problems. Here, the optimal clusters O_1, ..., O_k are an arbitrary partition of the dataset and the goal is to output k-centers c_1, ..., c_k such that the objective function sum_{i=1}^{k} sum_{x in O_{i}} ||x - c_{i}||^2 is minimized. It is not difficult to argue that any algorithm (without knowing the optimal clusters) that outputs a single set of k centers, will not behave well as far as optimizing the above objective function is concerned. However, this does not rule out the existence of algorithms that output a list of such k centers such that at least one of these k centers behaves well. Given an error parameter epsilon > 0, let l denote the size of the smallest list of k-centers such that at least one of the k-centers gives a (1+epsilon) approximation w.r.t. the objective function above. In this paper, we show an upper bound on l by giving a randomized algorithm that outputs a list of 2^{~O(k/epsilon)} k-centers. We also give a closely matching lower bound of 2^{~Omega(k/sqrt{epsilon})}. Moreover, our algorithm runs in time O(n * d * 2^{~O(k/epsilon)}). This is a significant improvement over the previous result of Ding and Xu who gave an algorithm with running time O(n * d * (log{n})^{k} * 2^{poly(k/epsilon)}) and output a list of size O((log{n})^k * 2^{poly(k/epsilon)}). Our techniques generalize for the k-median problem and for many other settings where non-Euclidean distance measures are involved.
  • 关键词:k-means; k-median; approximation algorithm; sampling
国家哲学社会科学文献中心版权所有