首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Minimum Cycle and Homology Bases of Surface Embedded Graphs
  • 本地全文:下载
  • 作者:Glencora Borradaile ; Erin Wolf Chambers ; Kyle Fox
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:51
  • 页码:23:1-23:15
  • DOI:10.4230/LIPIcs.SoCG.2016.23
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We study the problems of finding a minimum cycle basis (a minimum weight set of cycles that form a basis for the cycle space) and a minimum homology basis (a minimum weight set of cycles that generates the 1-dimensional (Z_2)-homology classes) of an undirected graph embedded on an orientable surface of genus g. The problems are closely related, because the minimum cycle basis of a graph contains its minimum homology basis, and the minimum homology basis of the 1-skeleton of any graph is exactly its minimum cycle basis. For the minimum cycle basis problem, we give a deterministic O(n^omega + 2^2g n^2)-time algorithm. The best known existing algorithms for surface embedded graphs are those for general sparse graphs: an O(n^omega) time Monte Carlo algorithm [Amaldi et. al., ESA'09] and a deterministic O(n^3) time algorithm [Mehlhorn and Michail, TALG'09]. For the minimum homology basis problem, we give an O(g^3 n log n)-time algorithm, improving on existing algorithms for many values of g and n.
  • 关键词:Cycle basis; Homology basis; Topological graph theory
国家哲学社会科学文献中心版权所有