首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Inserting Multiple Edges into a Planar Graph
  • 本地全文:下载
  • 作者:Markus Chimani ; Petr Hlinen{\'y
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:51
  • 页码:30:1-30:15
  • DOI:10.4230/LIPIcs.SoCG.2016.30
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let G be a connected planar (but not yet embedded) graph and F a set of additional edges not in G. The multiple edge insertion problem (MEI) asks for a drawing of G+F with the minimum number of pairwise edge crossings, such that the subdrawing of G is plane. An optimal solution to this problem is known to approximate the crossing number of the graph G+F. Finding an exact solution to MEI is NP-hard for general F, but linear time solvable for the special case of |F|=1 [Gutwenger et al, SODA 2001/Algorithmica] and polynomial time solvable when all of F are incident to a new vertex [Chimani et al, SODA 2009]. The complexity for general F but with constant k=|F| was open, but algorithms both with relative and absolute approximation guarantees have been presented [Chuzhoy et al, SODA 2011], [Chimani-Hlineny, ICALP 2011]. We show that the problem is fixed parameter tractable (FPT) in k for biconnected G, or if the cut vertices of G have bounded degrees. We give the first exact algorithm for this problem; it requires only O(|V(G)|) time for any constant k.
  • 关键词:crossing number; edge insertion; parameterized complexity; path homotopy; funnel algorithm
国家哲学社会科学文献中心版权所有