首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Polynomial-Sized Topological Approximations Using the Permutahedron
  • 本地全文:下载
  • 作者:Aruni Choudhary ; Michael Kerber ; Sharath Raghvendra
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:51
  • 页码:31:1-31:16
  • DOI:10.4230/LIPIcs.SoCG.2016.31
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Classical methods to model topological properties of point clouds, such as the Vietoris-Rips complex, suffer from the combinatorial explosion of complex sizes. We propose a novel technique to approximate a multi-scale filtration of the Rips complex with improved bounds for size: precisely, for n points in R^d, we obtain a O(d)-approximation with at most n2^{O(d log k)} simplices of dimension k or lower. In conjunction with dimension reduction techniques, our approach yields a O(polylog (n))-approximation of size n^{O(1)} for Rips filtrations on arbitrary metric spaces. This result stems from high-dimensional lattice geometry and exploits properties of the permutahedral lattice, a well-studied structure in discrete geometry. Building on the same geometric concept, we also present a lower bound result on the size of an approximate filtration: we construct a point set for which every (1+epsilon)-approximation of the Cech filtration has to contain n^{Omega(log log n)} features, provided that epsilon < 1/(log^{1+c}n) for c in (0,1).
  • 关键词:Persistent Homology; Topological Data Analysis; Simplicial Approximation; Permutahedron; Approximation Algorithms
国家哲学社会科学文献中心版权所有