首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:On Expansion and Topological Overlap
  • 本地全文:下载
  • 作者:Dominic Dotterrer ; Tali Kaufman ; Uli Wagner
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:51
  • 页码:35:1-35:10
  • DOI:10.4230/LIPIcs.SoCG.2016.35
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We give a detailed and easily accessible proof of Gromov's Topological Overlap Theorem. Let X be a finite simplicial complex or, more generally, a finite polyhedral cell complex of dimension d. Informally, the theorem states that if X has sufficiently strong higher-dimensional expansion properties (which generalize edge expansion of graphs and are defined in terms of cellular cochains of X) then X has the following topological overlap property: for every continuous map X -> R^d there exists a point p in R^d whose preimage intersects a positive fraction mu > 0 of the d-cells of X. More generally, the conclusion holds if R^d is replaced by any d-dimensional piecewise-linear (PL) manifold M, with a constant \mu that depends only on d and on the expansion properties of X, but not on M.
  • 关键词:Combinatorial Topology; Selection Lemmas; Higher-Dimensional Expanders
国家哲学社会科学文献中心版权所有