首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Subexponential Algorithms for Rectilinear Steiner Tree and Arborescence Problems
  • 本地全文:下载
  • 作者:Fedor Fomin ; Sudeshna Kolay ; Daniel Lokshtanov
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2016
  • 卷号:51
  • 页码:39:1-39:15
  • DOI:10.4230/LIPIcs.SoCG.2016.39
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A rectilinear Steiner tree for a set T of points in the plane is a tree which connects T using horizontal and vertical lines. In the Rectilinear Steiner Tree problem, input is a set T of n points in the Euclidean plane (R^2) and the goal is to find an rectilinear Steiner tree for T of smallest possible total length. A rectilinear Steiner arborecence for a set T of points and root r in T is a rectilinear Steiner tree S for T such that the path in S from r to any point t in T is a shortest path. In the Rectilinear Steiner Arborescense problem the input is a set T of n points in R^2, and a root r in T, the task is to find an rectilinear Steiner arborescence for T, rooted at r of smallest possible total length. In this paper, we give the first subexponential time algorithms for both problems. Our algorithms are deterministic and run in 2^{O(sqrt{n}log n)} time.
  • 关键词:Rectilinear graphs; Steiner arborescence; parameterized algorithms
国家哲学社会科学文献中心版权所有