摘要:A plane tiling consisting of congruent copies of a shape is isohedral provided that for any pair of copies, there exists a symmetry of the tiling mapping one copy to the other. We give a O(n*log^2(n))-time algorithm for deciding if a polyomino with n edges can tile the plane isohedrally. This improves on the O(n^{18})-time algorithm of Keating and Vince and generalizes recent work by Brlek, Provençal, Fédou, and the second author.